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Abstract

I study a model in which a finite number of men and women look for future spouses via random pairwise 
meetings. The central question is whether equilibrium marriage outcomes are stable matchings when search 
frictions are small. The answer is they can but need not be. For any stable matching there is an equilibrium 
leading to it almost surely. However there may also be equilibria leading to an unstable matching almost 
surely. A restriction to simpler strategies or to markets with aligned preferences rules out such equilib-
ria. However unstable—even Pareto-dominated—matchings may still arise with positive probability under 
those two restrictions combined. In addition, inefficiency due to delay may remain significant despite van-
ishing search frictions. Finally, a condition is identified under which all equilibria are outcome equivalent, 
stable, and efficient.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Overview

The stable matching is the main solution concept for cooperative two-sided matching prob-
lems under nontransferable utility. Many centralized mechanisms are designed to implement 
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stable matchings.1 However, whether outcomes of decentralized two-sided matching markets 
correspond to stable matchings remains unclear. The present paper addresses this question by 
considering a decentralized two-sided matching market modeled as a search and matching game. 
Following Gale and Shapley (1962) I inherit the interpretation that the game represents the situa-
tion in which unmarried men and women gather in a marketplace to look for future spouses. The 
game starts with an initial market à la Gale–Shapley, henceforth referred to as a marriage market, 
consisting of finitely many men and women with heterogeneous preferences. In every period a 
meeting between a randomly selected pair of a man and a woman takes place, during which they 
sequentially decide whether to marry each other. Mutual agreement leads to marriage. Married 
couples leave the game. Disagreement leads to separation. Separated people continue searching. 
The game ends when no mutually acceptable pairs of a man and a woman are left. Search is costly 
due to frictions parametrized as a common discount factor that diminishes the value of a future 
marriage. A game outcome, reflecting who has married whom and who stays single, corresponds 
to a matching for the initial market. The central question addressed in the paper is whether match-
ings that obtain in equilibria are stable matchings for the initial market when search frictions are 
small. The analysis focuses on a near-frictionless setting in order to test the general conjecture 
that if in a decentralized market the participants have easy access to each other with low costs 
then equilibrium outcomes would be in the core of the underlying market.2 The paper shows 
that the answer to the central question is indeterminate at best and No in general, in contrast to 
what has been conjectured on this matter.3 First, for any stable matching there is an equilibrium 
leading to that matching almost surely (Proposition 4.2), that is, every player expects to marry 
according to the pairing scheme implied by the matching. This result establishes that the set of 
all stable matchings is contained in the set of all matchings that may arise in equilibria. Then 
it is shown that the latter set may contain unstable matchings as well: Under certain preference 
structures there are equilibria leading to an unstable matching almost surely (Example 1). The 
paper proceeds to propose two conditions, each of which rules out such equilibria: 1. The players 
do not condition their behavior on the actions during any past failed meeting (Proposition 4.4). 
2. The players’ preferences satisfy the Sequential Preference Condition, a condition that implies 
a certain degree of preference alignment (Proposition 4.6). However the two conditions, sepa-
rately or combined, are not sufficient to rule out equilibria in which unstable matchings arise 
with positive probability; some of the probable matchings may even be Pareto-dominated (Ex-
ample 3). Another source of inefficiency is delay: Significant loss of efficiency due to delay may 
be present in an equilibrium even if search frictions are arbitrarily small (Examples 4 and 5). The 
paper ends with a uniqueness result that is pro-stability and efficiency: If the players’ preferences 
satisfy a strengthening of the Sequential Preference Condition which implies a stronger degree 
of alignment, then all equilibria are outcome equivalent, stable, and efficient (Proposition 4.8).

1.2. Literature

The present paper contributes to the literature on search and matching games in which a mar-
riage market is embedded. The central question of the literature agrees with that of the present 
paper: Do equilibrium outcomes correspond to stable matchings? An early paper in this lit-

1 See Roth and Liveria Sotomayor (1990) for a survey of the theory of the stable matching. Roth (2008) surveys 
applications in designing centralized mechanisms for two-sided matching markets.

2 It is well known that the core of the marriage market is the set of all stable matchings.
3 Roth and Liveria Sotomayor (1990, page 245).
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erature (Roth and Vande Vate, 1990) studies the steady state of a search and matching game 
with short-sighted players and concludes that a stable matching obtains almost surely. Later pa-
pers consider sophisticated players. McNamara and Collins (1990), Burdett and Coles (1997), 
Eeckhout (1999), Bloch and Ryder (2000) and Smith (2006) assume that the underlying mar-
riage market admits a unique stable matching that is positively assortative. Their results confirm 
that equilibrium outcomes retain some extent of assorting. Adachi (2003) and Lauermann and 
Nöldeke (2014) consider a market with a general preference structure. Adachi (2003) studies a 
model in which the steady state stock of active players is exogenously maintained and confirms 
that equilibrium outcomes converge to stable matchings as search frictions vanish. Lauermann 
and Nöldeke (2014) consider endogenous steady states and finds that all limit outcomes are stable 
if and only if the underlying market has a unique stable matching.

The model considered in this paper also embeds a marriage market in a search and matching 
game. In contrast to the previously cited papers, all of which study steady state equilibria in a 
stationary setting, the present model features a nonstationary search situation. Indeed, the market 
shrinks as players marry and leave. Moreover, all but Roth and Vande Vate (1990) consider 
a market with a continuum of nameless players, whereas in the present model the market is 
finite and the players are identifiable. Nonstationarity and finiteness make the present model 
qualitatively different from most models considered in the literature. It follows that the set of 
matchings that may obtain in equilibria of the present model is in general different from that of 
a stationary and continuum model.

Another related literature investigates models embedding a marriage market in a sequential 
bargaining game reminiscent of the deferred acceptance protocol in Gale and Shapley (1962). 
This literature includes Alcalde (1996), Diamantoudi et al. (2015), Pais (2008), Suh and Wen
(2008), Niederle and Yariv (2009), Bloch and Diamantoudi (2011), and Haeringer and Wooders
(2011).4 Like the present paper, these papers consider a finite marriage market that shrinks as 
players marry and leave. The difference between models in this literature and those in the search 
and matching literature, including the present model, is the search technology. A sequential bar-
gaining game models a market with directed search: When it is his or her turn to move, a player 
can reach and deal with any player of the opposite sex without delay or uncertainty. In contrast, 
a search and matching game models a market with undirected search: Bilateral meetings are 
stochastic; one needs patience and luck to encounter a particular person. One common finding 
among papers with a sequential bargaining model is that some or all stable matchings can be sup-
ported in equilibria. Such equilibria bear resemblance to equilibria that lead to a particular stable 
matching almost surely in the present model, see Proposition 4.2. On the other hand, unstable 
matchings may also obtain in equilibria of a sequential bargaining game, which is the case in 
Diamantoudi et al. (2015), Suh and Wen (2008) and Haeringer and Wooders (2011). This com-
mon finding is also in accordance with results in the present paper. However, because of random 
search, the model in the present paper may have equilibria that have no counterpart in a sequen-
tial bargaining model. For instance, in a typical sequential bargaining model, an equilibrium in 
pure strategies leads to one matching deterministically, whereas in this model an equilibrium 
in pure strategies may lead to several possible matchings, because the players’ strategies may 
depend on which of the multiple probable paths the history has taken. In this respect, nonsta-

4 Marriage problems belong to a class of coalitional games under nontransferable utility called “hedonic games”. 
Alcalde and Romero-Medina (2000) and Alcalde and Romero-Medina (2005) investigate decentralized implementation 
of stable outcomes of many-to-one matching problems, which are also hedonic games. Bloch and Diamantoudi (2011)
study implementability of the core of a general hedonic game.
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tionarity has little influence in a sequential bargaining model because a player’s expected payoff 
remains unchanged as the game unfolds, whereas in the present model exogenous uncertainty 
may drastically change a player’s continuation prospect.

A third related literature5 studies whether the Walrasian price can be supported in equilibria 
of a search and bargaining game in which an exchange economy, instead of a marriage market, 
is embedded. Papers from this literature and the present paper are united under the theory of 
non-cooperative foundation of cooperative solution concepts. Indeed, the present model can be 
seen as the nontransferable utility version of the models considered in Rubinstein and Wolinsky
(1990) and Gale and Sabourian (2006).

The layout of the paper is as follows: Section 2 introduces the game. Section 3 sets up an 
analytic framework. Section 4 provides the analysis. Section 5 concludes. Lengthy proofs and 
additional examples are found in Appendix A.

2. The game

2.1. The marriage market

There are two disjoint sets of players: the set of men M and the set of women W . A generic 
man is denoted as m, a woman as w, and a pair of a man and a woman as (m, w). A man 
might end up marrying some w ∈ W or remaining single. All men’s preferences over W ∪ {s}, 
where s stands for being single, are represented by u : M × (W ∪ {s}) �→ R where u(m, ·) is 
m’s Bernoulli utility function over W ∪ {s}. Likewise all women’s preferences are represented 
by v : (M ∪ {s}) × W �→ R where v(·, w) is w’s Bernoulli utility function over M ∪ {s}. The
marriage market (or simply market) is summarized by the tuple (M, W, u, v).

Let �m denote man m’s preference relation over W ∪ {s} induced by u(m, ·): w �m w′ if 
and only if u(m, w) ≥ u(m, w′). Likewise let �w denote woman w’s preference relation over 
M ∪ {s}. Player y is acceptable to player x if y 	x s. A market is trivial if it does not have a 
mutually acceptable pair. A game starts with a market satisfying the following:

A1 Preferences are strict: u(m, ·) is one-to-one for any m ∈ M ; v(·, w) is one-to-one for any 
w ∈ W .

A2 Normalization: u(m, s) = 0 for any m ∈ M ; v(s, w) = 0 for any w ∈ W .
A3 The market is finite: |M| < ∞ and |W | < ∞.
A4 The market is nontrivial.

2.2. The game rules

The game starts on day one (t = 1) with an initial market (M, W, u, v) and unfolds indef-
initely into the future (t = 2, 3, . . .). On each day a randomly selected pair (m, w) ∈ M × W

meet. The random meeting process will be described in detail later. As they meet, m moves first 
to either accept or reject w. If m rejects w then the pair separate and return to the market. If m
accepts w then it is w’s turn to either accept or reject m. If w accepts m then (m, w) marry and 
leave the game for good; otherwise the pair separate and return to the market. Either the sepa-
ration or the marriage concludes the current day. m and w receive one-time payoffs of u(m, w)

5 Surveyed in Osborne and Rubinstein (1990) and Gale (2000).



220 Q. Wu / Journal of Economic Theory 160 (2015) 216–242
and v(m, w), respectively, upon marrying each other. The value of a marriage delayed by τ days 
is discounted by δτ where the common discount factor δ ∈ (0, 1) is meant to capture the overall 
search frictions. The game ends when there is no longer a mutually acceptable pair left in the 
market. A player receives a payoff of 0 when the game ends if he or she stays unmarried at that 
time.6 Information is complete and past actions are perfectly observable.

2.3. Notations and terminology

Let H denote the set of all histories. Let Ĥ denote the set of all nonterminal histories after 
which a new day starts but the pair to meet on that day has not been determined. For h ∈ H let 
�(h) denote the subsequent subgame given h is reached. Note that �(h) per se is a proper game 
if and only if h ∈ Ĥ .

Let Z denote the set of all terminal histories. A terminal history may be infinite. The outcome 
matching of h ∈ Z is a mapping μh : M ∪ W �→ M ∪ W ∪ {s} such that μh(x) is player x’s 
corresponding spouse if x managed to marry at some point along h, or otherwise μh(x) = s. 
In the latter case x is said to be single under h. If h is finite then x is single if he or she stays 
unmarried until the game ends at h. If h is infinite then x is single if he or she is unmarried after 
any finite subhistory of h.

The market (M ′, W ′, u′, v′) is a submarket of the initial market (M, W, u, v) if M ′ ⊂ M , 
W ′ ⊂ W , u′ is u restricted to M ′ × (W ′ ∪ {s}), and v′ is v restricted to (M ′ ∪ {s}) × W ′. Abuse 
notation to write (M ′, W ′, u, v) for simplicity. Let S denote the set of all nontrivial submarkets 
of the initial market. Given S := (M ′, W ′, u, v), respectively use the notations x ∈ S to denote 
x ∈ M ′ ∪ W ′, (m, w) ∈ S to denote (m, w) ∈ M ′ × W ′, and S\(m, w) to denote the submarket 
(M ′\{m}, W ′\{w}, u, v).

For S ∈ S and x ∈ S, let AS(x) denote the set {y ∈ S : y 	x s and x 	y s}. AS(x) is thus 
the set of all players in S with whom x forms a mutually acceptable pair. Let αS(x) denote the 
greatest element in AS(x) ∪ {s} according to �x .

For h ∈ H the remaining market after h, denoted as S(h), consists of the men and women 
who are unmarried after h. Obviously S(h) ∈ S for any nonterminal h ∈ H .

2.4. The contact function

Recall that on each day a pair of a man and a woman are randomly selected to meet each other. 
The random meeting process is modeled by the contact function C : M × W × S �→ [0, 1], 
where C(m, w, S) is the probability that (m, w) meet on a day at the beginning of which the 
remaining market is S. The game rules thus require that for any S ∈ S ,

B1 Only unmarried people meet: C(m, w, S) = 0 if m /∈ S or w /∈ S.
B2 A meeting takes place on each day: 

∑
(m,w)∈S C(m, w, S) = 1.

In addition, assume the meeting probability of any remaining pair is considerably large:

6 It might be more natural to let the game end until no man or woman is left. Lemma 4.1 to appear later, which still holds 
under this alternative game-ending rule, implies under the alternative rule no one will marry and everyone’s expected 
payoff is 0 in any subgame perfect equilibrium when the remaining market is trivial. Thus the default game-ending rule 
neither creates nor destroys equilibria in effect, yet it simplifies the exposition.
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B3 There exists ε > 0 such that C(m, w, S) > ε if (m, w) ∈ S.

Note that by the definition of the contact function, the meeting probabilities on a given day are 
determined by the remaining market at the beginning of that day. This implies that �(h) and 
�(h′) are isomorphic for any histories h and h′ such that S(h) = S(h′).

The game is summarized by the tuple (M, W, u, v, C, δ).

3. From equilibria to matchings

3.1. Equilibria

For most of the analysis the solution concept that will be applied is the subgame perfect equi-
librium. In addition I consider two equilibrium selection criteria to accommodate more restrictive 
information settings.

For history h let g(h) denote the sequence (mt , wt, Rt)t=1:τ(h) where mt and wt are the man 
and woman who met on date t under h, Rt ∈ {marriage, separation} is the result of that meeting, 
and τ(h) is the date of the last concluded meeting under h. A strategy profile σ satisfies the
private-dinner condition if g(h) = g(h′) implies σ restricted to �(h) is the same as σ restricted 
to �(h′). The private-dinner condition accommodates the information setting in which players 
are aware of who met whom in the past and the results of those meetings but not what happened 
during those meetings, presumably because the meetings took place over private dinners. In 
particular, if a meeting ended in separation there is no telling whether it was the man or the 
woman who said no. Note that the private-dinner condition implies a player’s strategy cannot 
depend on actions taken during a failed meeting even if himself or herself participated in it.

A strategy profile satisfies the Markov condition if for any history h the player who moves 
after h conditions his or her behavior only on S(h). The Markov condition is stronger than 
the private-dinner condition because g(h) = g(h′) implies S(h) = S(h′) but not vice versa. The 
Markov condition is compatible with the more restrictive information setting in which players 
are only aware of the current market.

When describing strategies, I will simply say “player x accepts/rejects player y under con-
dition K” to represent the statement that x accepts/rejects y at every decision point satisfying 
condition K where it is x’s turn to make the pertinent decision. I say (m, w) marry upon first 
meeting under strategy profile σ if on the equilibrium path the first meeting between (m, w) re-
sults in marriage. (m, w) marry upon first meeting if and only if on the equilibrium path (m, w)

always accept each other.

3.2. Matchings

A matching for (M, W, u, v) is a scheme that pairs some players into married couples and 
leaves others single. A matching is formalized as a function μ : M ∪W �→ M ∪W ∪{s} such that 
μ(x) ∈ W ∪{s} if x ∈ M , μ(x) ∈ M ∪{s} if x ∈ W , and μ(μ(x)) = x if μ(x) �= s. μ is unstable if 
there is a player x such that s 	x μ(x), in which case μ is individually blocked by x, or if there 
is a pair (m, w) such that w 	m μ(m) and m 	w μ(w), in which case μ is pairwise blocked
by (m, w). μ is stable if it is not unstable. Gale and Shapley (1962) shows that at least one 
stable matching exists for any marriage market, and moreover there is a men-optimal matching
commonly agreed by all men as the best stable matching and likewise there is a women-optimal 
matching. Given a matching μ for the market (M, W, u, v) let Sμ denote the set of all nontrivial 
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submarkets (M ′, W ′, u, v) such that W\W ′ = μ(M\M ′) where μ(M\M ′) denotes the μ-image 
of M\M ′. Observe that if S ∈ Sμ then μ restricted to S is a matching for S; moreover if μ is a 
stable matching for (M, W, u, v) then μ restricted to S is a stable matching for S.

Obviously the outcome matching of any h ∈ Z is a matching for the initial market. A strategy 
profile σ and the contact function C jointly induce a probability measure on 2Z and hence also 
induce a probability mass function on the set of all matchings for the initial market. We say that 
a matching obtains if it arises as an outcome matching. A strategy profile σ enforces a matching 
μ if μ obtains almost surely under σ . μ being enforced implies the players will almost surely be 
coupled together or left single according to μ.

3.3. Near-frictionless analysis

This paper focuses on analyzing game outcomes when search frictions are small. With respect 
to this approach we introduce the following terminology: An environment (M, W, u, v, C) :=
{(M, W, u, v, C, δ) : δ ∈ (0, 1)} is the set of all games that share the same initial market and con-
tact function. A strategy profile σ is a limit equilibrium of the environment (M, W, u, v, C)

if there exists some d < 1 such that σ is a subgame perfect equilibrium of the game 
(M, W, u, v, C, δ) for any δ > d .

4. Analysis

4.1. Preliminary results

The following lemma collects some useful results for future reference.

Lemma 4.1. For a subgame perfect equilibrium σ let π(x) denote the expected payoff for player 
x under σ . The following are true for σ :

(a) π(x) ≥ 0 for any x ∈ M ∪ W .
(b) (m, w) marry with positive probability only if m is acceptable to w.7

(c) (m, w) marry with positive probability only if αSI (m) �m w and αSI (w) �w m where SI

denotes the initial market.
(d) π(m) ≤ u(m, αSI (m)) for any m ∈ M . π(w) ≤ v(αSI (w), w) for any w ∈ W .

Proof. (a) follows from the observation that a player secures an expected payoff of 0 by rejecting 
everyone forever. The same observation implies a woman’s equilibrium continuation payoff from 
rejecting a man is nonnegative, thus (b) follows. To show (c), first observe that if w 	m αSI (m)

then m is unacceptable to w, thus (m, w) will not marry by (b). Suppose m 	w αSI (w) yet 
(m, w) marry with positive probability. w is unacceptable to m. That (m, w) marry with positive 
probability implies m accepts w with positive probability after some history h. Let h′ denote the 
immediate history following h as m has accepted w. w rejects m with positive probability after 
h′ because otherwise m’s expected payoff from accepting w after h is u(m, w) < 0, less than the 
payoff of 0 from rejecting everyone forever. Let V denote w’s expected payoff in the subsequent 

7 However, a pair (m, w), where w is unacceptable to m, might marry in equilibrium with positive probability. For 
an example of this possibility see Appendix A.3. Before reading the example the reader is recommended to go through 
Proposition 4.2 and Example 1 in the main text.
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subgame � as she has rejected m after h′. That w rejects m with positive probability after h′
implies δV ≥ v(m, w), then in turn implies there exists some m′ 	w m such that (m′, w) marry 
with positive probability in �. Since m′ 	w αSI (w), we can apply the same argument for m′ and 
conclude there exists some m′′ such that m′′ 	w m′ and (m′′, w) marry with positive probability 
in some subgame. Iteratively applying the same argument leads to the necessary contradiction 
because M is finite. (d) follows from (c). �
4.2. Enforcing stable matchings

The foremost question of whether stable matchings may be enforced in equilibria is addressed 
in this subsection. Proposition 4.2 below gives a positive answer by showing that any stable 
matching can be enforced in a limit equilibrium. The proof is based on a construction per se 
worth highlighting: For a matching μ of the initial market, the μ-strategy profile σμ is described 
by the following table that specifies what man m and woman w do if they meet each other when 
the remaining market is S. In the table μS denotes the women-optimal matching for S.

m w

If S ∈ Sμ Accept w if w �m μ(m) Accept m if m �w μ(w)

If S /∈ Sμ Accept w if w �m μS(m) Accept m if m �w μS(w)

Let Vμ(x, δ) be player x’s expected payoff under σμ if the discount factor is δ.

Proposition 4.2. If μ is a stable matching for the initial market of the environment (M, W, u,

v, C) then:

(a) σμ enforces μ.
(b) (m, w) marry upon first meeting under σμ if w = μ(m).
(c) limδ→1 Vμ(m, δ) = u(m, μ(m)) and limδ→1 Vμ(w, δ) = v(μ(w), w).
(d) σμ satisfies the Markov condition.
(e) σμ is a limit equilibrium of (M, W, u, v, C).

Proof. The initial market is in Sμ. Observe that if (m, w) meet when the remaining market is 
in Sμ then the meeting results in marriage if and only if w = μ(m) because μ being stable 
implies w �m μ(m) and m �w μ(w) hold simultaneously if and only if w = μ(m). Thus the 
remaining market after any history on the equilibrium path is in Sμ, which combined with the 
previous observation implies (b). It also follows that (m, w) will not marry on the equilibrium 
path if w �= μ(m). Consequently if μ(m) �= s then (m, μ(m)) remain in the market until the 
first meeting between them takes place. Thus the probability that (m, μ(m)) marry is equal to 
the probability that they meet eventually, the latter being bounded from below by 

∑∞
n=0 ε(1 −

ε)n = 1, implying (a). Following (a) and (b) we have u(m, μ(m)) ≥ Vμ(m, δ) ≥ ∑∞
n=0 ε[δ(1 −

ε)]nu(m, μ(m)). (c) follows from limδ→1
∑∞

n=0 ε[δ(1 − ε)]nu(m, μ(m)) = u(m, μ(m)) and the 
analogous equality for any w. (d) follows from the observation that a player’s behavior depends 
on only the current remaining market.

Now show (e). Suppose (m, w) meet on a day when the remaining market is S. Let μ denote 
μ restricted to S if S ∈ Sμ or μS otherwise. Thus μ is a stable matching for S. Let � de-
note the subsequent subgame resulting from (m, w)’s separation. By construction σμ restricted 
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to � is equal to the μ-strategy profile σμ of �. Let Vμ(x, δ|�) denote the expected payoff 
for player x ∈ S under σμ restricted to �. Then limδ→1 δVμ(x, δ|�) = u(m, μ(m)) by (c) and 
δVμ(x, δ|�) < u(m, μ(m)) by (a); the analogous equality and inequality respectively hold for w. 
Apply one-deviation analysis for m and w. For δ sufficiently close to 1, δVμ(w, δ|�) < v(m, w)

if and only if m �w μ(w), where the left side of the inequality is w’s expected payoff from re-
jecting m and the right side that from accepting m. Thus accepting m if and only if m �w μ(w) is 
optimal for w. m’s expected payoff from rejecting w is δVμ(m, δ|�) whereas that from accepting 
w is u(m, μ(m)) if w = μ(m), δVμ(m, δ|�) if w 	m μ(m), or pu(m, w) + (1 − p)δVμ(m, δ|�)

if μ(m) 	m w where p is either 0 or 1. Thus accepting w if and only if w �m μ(m) is optimal 
for m if δ is sufficiently close to 1. �

Proposition 4.2 agrees with the common finding that the core of a coalitional game can be sup-
ported in equilibria of a non-cooperative counterpart. For results along this line in a similar search 
and matching context see Rubinstein and Wolinsky (1990), Adachi (2003), and Lauermann and 
Nöldeke (2014). The limit equilibria constructed above will also be used as important building 
blocks for more complicated equilibria.

4.3. Enforcing unstable matchings

In this subsection, the question of whether unstable matchings are enforceable in limit equi-
libria is addressed with an affirmative example.

Example 1 (Reward and punishment). To describe the initial market, player x’s preferences are 
represented by a list P(x) such that P(x) = a, . . . , b if and only if a 	x . . . 	x b 	x s. Note that 
players unacceptable to x are omitted from P(x). The initial market is represented as

P(m1) = w2,w1, P (w1) = m1,m2,m3

P(m2) = w1,w2, P (w2) = m2,m3,m1,

P (m3) = w2.

A limit equilibrium σ is constructed to enforce μ such that μ(m1) = w2, μ(m2) = w1 and 
μ(m3) = s. μ is unstable because the pair (m3, w2) blocks it. σ is specified by an automaton 
with the following states:

q0: The initial state. In q0, m1 accepts w2; m2 accepts no one; m3 accepts no one; w1 accepts 
m1; w2 accepts m1 and m2. The transition rules are:

q0 −→

⎧⎪⎨
⎪⎩

q1 if (m1,w2) marry,

q2 if for some (m,w) �= (m1,w2): w rejects m or (m,w) marry,

q0 otherwise.

q1: An absorbing state. As the state has just become q1, the remaining market is S1 :=
S0\(m1, w2) ∈ Sμ where S0 denotes the initial market. In q1 the players follow the 
μS1 -strategy profile where μS1 is μ restricted to S1.

q2: An absorbing state. Let S2 denote the (history-dependent) remaining market as the state has 
just become q2. In q2 the players follow the μS2 -strategy profile where μS2 denotes the 
women-optimal matching for S2.



Q. Wu / Journal of Economic Theory 160 (2015) 216–242 225
On the equilibrium path (m1, w2) marry first. Then the state becomes q1 in which μS1 (μ re-
stricted to S1) is enforced, as implied by Proposition 4.2(a), because μS1 is a stable matching 
for S1. Thus μ obtains under any finite terminal history on the equilibrium path. It is straight-
forward to verify that the game ends almost surely, implying μ obtains almost surely. Thus σ
enforces μ.

Now verify that σ is indeed a limit equilibrium. By Proposition 4.2(e), σ restricted to sub-
games in q1 and q2 is a limit equilibrium of the respective subgames. Thus it suffices to check q0. 
Consider the situation that the blocking pair (m3, w2) meet on a day in q0. Apply one-deviation 
analysis. Suppose m3 has accepted w2. w2’s action of rejecting m3 will switch the state to q2 in 
which the μW -strategy profile will be implemented where μW is the women-optimal matching 
for the initial market. By Proposition 4.2(c), w2’s expected payoff from rejecting m3 is approxi-
mately v(μW(w2), w2) = v(m2, w2) for δ sufficiently close to 1, strictly greater than v(m3, w2). 
Thus rejecting m3 is optimal when near-frictionless. Now consider m3. If he rejects w2 then μ is 
enforced; otherwise if he accepts w2 then w2 will reject him, switching the state to q2 in which 
μW is enforced. μ(m3) = μW(m3) = s implies rejecting w2 is (weakly) optimal for m3.

Consider the situation that (m2, w1) meet in q0. As in w2’s case above, it is optimal for w1
to reject m2 for δ sufficiently close to 1. m2’s case is slightly different from m3’s case above. 
If m2 accepts w1, the μW -strategy profile will be implemented under which m2’s expected pay-
off is approximately u(m, μW(m)) = u(m2, w2) for δ sufficiently close to 1. If m2 rejects w1, 
m2 will marry w1 eventually but only after (m1, w2) marry. A lower bound for m2’s expected 
payoff from rejecting w1 can thus be computed as 

[
δε

1−δ(1−ε)

]2
u(m2, w1), strictly greater than 

u(m2, w2) for δ sufficiently close to 1. Rejecting w1 in q0 is optimal when near-frictionless. The 
optimality of σ in other cases is either similar to those discussed above or can be verified by 
routine inspection. �

A blocking pair would profit from marrying each other to circumvent an unstable match-
ing. To enforce an unstable matching such circumvention must be discouraged. In Example 1, 
a reward-punishment scheme, implemented in q2, is employed to prevent the blocking attempt 
from (m3, w2). To see the point, note that if m3 initiated a blocking attempt by accepting w2, w2
would not oblige because she would receive a reward, which is the promise of marrying the more 
preferable man m2, from rejecting m3. In contrast m2 would be (weakly) punished8 for initiating 
the blocking attempt by being forced to stay single. Meanwhile, to ensure the reward for w2 is 
credible, m2 needs to be available until either m3 or w2 has married. In Example 1, m2 may 
marry only after (m1, w2) have married. m2’s potential attempt to marry w1 early is discouraged 
by a similar reward-punishment scheme. Should m2 accept w1 when (m1, w2) have not married, 
he would be strictly punished (by marrying w2 eventually) for deviating and w1 would be re-
warded (by marrying m1 eventually) for not obliging. The reward-punishment schemes resemble 
those used in Proposition 1 in Rubinstein and Wolinsky (1990) supporting non-core outcomes. 
In their model, a reward-punishment scheme targeted at the blocking attempt between a buyer 
and a seller entails reaction from at most three players (those whose welfare would be affected 
should the attempt succeed), because all sellers are identical and so are all buyers. In contrast, 
in the present model, because of a more complicated preference structure, a reward-punishment 
scheme may require the entire market to re-coordinate, which would make its implementability 

8 Example 1 relies on the knife-edge case that m3 rejects w2 when indifferent. Such fragility need not be present in 
enforcing an unstable matching. In an earlier version of this paper I provided a more complicated example in which all 
circumventing attempts are strictly punished.
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more difficult. Indeed, Proposition 4.6 to appear later will show for certain markets no unstable 
matching can be enforced.

4.4. Sufficient conditions for enforced matchings to be stable

In this subsection two points are made regarding the enforceability of unstable matchings. 
First, disabling reward-punishment schemes excludes unstable matchings from matchings en-
forceable in equilibria. Second, enforceability of unstable matchings depends on the preference 
structure. Each point is made by a condition under which all matchings enforceable in equilibria 
are stable.

The following lemma will be useful for the proofs of further results.

Lemma 4.3. If an unstable matching μ is enforced in a subgame perfect equilibrium σ then 
for any pair (m, w) blocking μ, σ prescribes the following for any on-equilibrium-path meeting 
between (m, w): m rejects w, moreover if m deviated to accepting w then w would reject m with 
positive probability.

Proof. Consider any on-equilibrium-path meeting between a blocking pair (m, w). Suppose w
would accept m with probability 1 after she has been accepted by m. m must reject w in the 
first place, because otherwise (m, w) would marry with positive probability in equilibrium, a 
contradiction. It follows that m’s continuation payoff from rejecting w is weakly higher than 
u(m, w), the latter strictly higher than u(m, μ(m)) since the pair (m, w) blocks μ, implying m
would marry someone other than μ(m) with positive probability in equilibrium, a contradiction. 
Thus w’s equilibrium strategy is to reject m with positive probability in the current meeting. This 
implies w’s expected payoff from rejecting m is weakly greater than v(m, w), the latter strictly 
greater than v(μ(w), w). Hence in the subsequent subgame � resulting from w having rejected 
m, w will marry with someone other than μ(w) with positive probability. Suppose m accepts 
w with positive probability in the current meeting, then � is reached with positive probability, 
implying w would marry someone other than μ(w) with positive probability in equilibrium, a 
contradiction. �

Lemma 4.3 implies that in order to deter a blocking pair (m, w) from circumventing the 
enforcement of an unstable matching, m must be punished for initiating a blocking attempt and w
rewarded for not obliging. Obviously such a scheme cannot be implemented if the other players 
cannot tell whether (m, w)’s separation resulted from a failed blocking attempt initiated by m
but turned down by w, or from m having rejected w as prescribed. As the upcoming proposition 
shows, the private-dinner condition, which disallows the players from conditioning their behavior 
on the actions during any failed meeting, indeed rules out unstable matchings from matchings 
enforceable in equilibria.

Proposition 4.4. No unstable matching can be enforced in a private-dinner equilibrium.

Proof. Prove by contradiction. Suppose an unstable matching μ for the initial market is en-
forced in a private-dinner equilibrium σ . μ is individually rational by Lemma 4.1(a), thus some 
pair (m, w) blocks μ. Consider the situation that (m, w) meet on the first day of the game. Let 
h ∈ Ĥ denote the history corresponding to m having rejected w on the current day. Let h′ ∈ Ĥ

denote the history corresponding to m having accepted w and w having rejected m on the current 



Q. Wu / Journal of Economic Theory 160 (2015) 216–242 227
day. Thus g(h) and g(h′) are both the one-entry sequence (m, w, separation). Let V and V ′ re-
spectively denote w’s expected payoffs in �(h) and �(h′). The private-dinner condition implies 
V = V ′. By Lemma 4.3, w would reject m with positive probability on the current day if she 
was accepted, implying δV ′ ≥ v(m, w). h is on the equilibrium path by Lemma 4.3 because m
rejects w on the current day in equilibrium. Thus μ is enforced by σ restricted to �(h), imply-
ing v(μ(w), w) ≥ V . Since the pair (m, w) blocks μ, we have v(m, w) > v(μ(w), w), implying 
δV = δV ′ ≥ v(m, w) > v(μ(w), w) ≥ V , a contradiction. �

Proposition 4.4 identifies a condition on the equilibrium that negates enforceability of unstable 
matchings for any initial market. In contrast the upcoming proposition identifies a condition on 
the initial market that negates enforceability of unstable matchings in any equilibrium.

Call (m, w) a top pair for submarket S if m = αS(w) and w = αS(m). (m, w) is a top pair 
for S if for m, w is the best woman among those in S who find m acceptable, and vice versa. 
A marriage market satisfies the Sequential Preference Condition if there is an ordering of the 
men m1, . . . , m|M|, an ordering of the women w1, . . . , w|W |, and a positive integer k such that:

1. For any i ≤ k, (mi, wi) is a top pair for Si := ({mj : j ≥ i}, {wj : j ≥ i}, u, v).
2. Sk+1 := ({mj : j ≥ k + 1}, {wj : j ≥ k + 1}, u, v) is trivial.

A stronger condition, introduced in Eeckhout (2000), implies that the market has a unique sta-
ble matching.9 The present Sequential Preference Condition, albeit weaker, is still sufficient for 
uniqueness. The unique stable matching pairs mi to wi for any i ≤ k and leaves mi and wi sin-
gle for any i > k. The Sequential Preference Condition implies that the players’ preferences are 
aligned in a certain way, see Eeckhout (2000) for a different formalization that highlights the 
alignment.

Lemma 4.5. If (m, w) is a top pair for the initial market then (m, w) marry with positive proba-
bility, and upon first meeting, in any subgame perfect equilibrium.

Proof. If (m, w) is a top pair for the initial market then clearly they are a top pair for any submar-
ket in which both are present. w always accepts m in any subgame perfect equilibrium because 
the equilibrium payoff from rejecting m is strictly less than v(m, w) by Lemma 4.1(d). It follows 
that in any subgame perfect equilibrium m always accepts w because his payoff from accepting 
w is u(m, w) whereas that from rejecting w is strictly less than u(m, w) by Lemma 4.1(d). Thus 
(m, w) marry upon first meeting in any subgame perfect equilibrium. That they marry with pos-
itive probability follows from the assumption that they meet on the first day of the game with 
positive probability. �
Proposition 4.6. If the initial market satisfies the Sequential Preference Condition then no un-
stable matching can be enforced in any subgame perfect equilibrium.

Proof. Let the men and women be ordered as in the definition of the Sequential Preference Con-
dition and k be the corresponding index threshold. Fix a subgame perfect equilibrium σ that 

9 The condition in Eeckhout (2000), sometimes also called the Sequential Preference Condition in the literature, is 
equivalent to the present condition if |M| = |W |, every man is acceptable to every woman and vice versa.
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enforces some matching μ. (m1, w1) marry with positive probability under σ by Lemma 4.5. It 
follows that μ(m1) = w1. It also follows that a subgame with remaining market S2 is reached 
with positive probability, because if (m1, w1) meet on the first day, which occurs with positive 
probability, then they marry and the remaining market becomes S2. Suppose for any i < n ≤ k

for some n, μ(mi) = wi and a subgame with remaining market Si+1 is reached with positive 
probability. By the inductive hypothesis a subgame � with remaining market Sn is reached 
with positive probability. By Lemma 4.5, (mn, wn) marry with positive probability in � un-
der σ , implying that (mn, wn) marry with positive probability in the initial game under σ . Hence 
μ(mn) = wn. It also follows that a subgame with remaining market Sn+1 is reached with posi-
tive probability. By induction, for any i ≤ k, μ(mi) = wi and a subgame with remaining market 
Si+1 is reached with positive probability, implying the subgame with remaining market Sk+1 is 
reached with positive probability. As the remaining market becomes Sk+1 the game ends and any 
player x ∈ Sk+1 remains single. Thus μ(mi) = μ(wi) = s for any i > k. The proposition follows 
from the observation that μ is the unique stable matching. �

For the sequential bargaining model considered in Suh and Wen (2008), if the underlying 
marriage market satisfies the Sequential Preference Condition then there is a unique equilibrium 
implementing the unique stable matching (Theorem 1).10 However, the Sequential Preference 
Condition does not guarantee a unique subgame perfect equilibrium for the present model, as 
will be shown in a later example (Example 3). In some of the additional equilibria, a lottery of 
matchings, instead of a single matching, is induced due to the uncertainty in the search process, 
which is absent from the model in Suh and Wen (2008).

4.5. Equilibria inducing a lottery of matchings

Instead of enforcing a single matching, there may exist equilibria inducing a lottery of mul-
tiple matchings. In this subsection examples are given showing that unstable matchings, even 
Pareto-dominated ones, may obtain with positive probability in such equilibria.

Example 2 (Regret). The initial market is described by the following lists:

P(m1) = w2,w1,w3, P (w1) = m1,m2,m3,

P (m2) = w3,w2,w1, P (w2) = m2,m1,m3,

P (m3) = w2,w3,w1, P (w3) = m3,m2,m1,

P (m′
1) = w′

2,w
′
1,w

′
3, P (w′

1) = m′
1,m

′
2,m

′
3,

P (m′
2) = w′

3,w
′
2,w

′
1, P (w′

2) = m′
2,m

′
1,m

′
3,

P (m′
3) = w′

2,w
′
3,w

′
1, P (w′

3) = m′
3,m

′
2,m

′
1.

Moreover, 1
2v(m2, w2) + 1

2v(m3, w2) > v(m1, w2) and 1
2v(m′

2, w
′
2) + 1

2v(m′
3, w

′
2) > v(m′

1, w
′
2). 

The contact function satisfies C(m, w, S) = C(m̂, ŵ, S) for any pairs (m, w) ∈ S and (m̂, ŵ) ∈ S

for any S ∈ S . The initial market has a unique stable matching μ such that μ(mi) = wi and 
μ(m′

i ) = w′
i for i = 1, 2, 3.

10 Theorem 1 in Suh and Wen (2008) uses the stronger condition from Eeckhout (2000), but remains true under the 
present Sequential Preference Condition.
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In the limit equilibrium σ to be described shortly, two matchings, μa and μb given below, 
obtain, each with probability 0.5:

μa(m1) = w1, μa(m2) = w3, μa(m3) = w2, μa(m
′
i ) = w′

i , i = 1,2,3,

μb(m
′
1) = w′

1, μb(m
′
2) = w′

3, μb(m
′
3) = w′

2, μb(mi) = wi, i = 1,2,3.

Neither μa nor μb is stable: the pair (m1, w2) blocks μa and the pair (m′
1, w

′
2) blocks μb. σ is 

specified by an automaton with the following states:

q0: The initial state. m1 accepts w1 and w2. m′
1 accepts w′

1 and w′
2. Every other man accepts no 

one. Every woman accepts her first choice. The transition rules are

q0 −→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qa if (m1,w1) marry,

qb if (m′
1,w

′
1) marry,

q3 if some couple other than (m1,w1) or (m′
1,w

′
1) marry,

q0 otherwise.

qa : An absorbing state. As the state has just become qa the remaining market is Sa :=
S0\(m1, w1) ∈ Sμa where S0 denotes the initial market. In qa the players follow the 
μ̂a-strategy profile where μ̂a is μa restricted to Sa .

qb: An absorbing state. As the state has just become qb the remaining market is Sb :=
S0\(m′

1, w
′
1) ∈ Sμb

. In qb the players follow the μ̂b-strategy profile where μ̂b is μb re-
stricted to Sb.

q3: An absorbing state. Let S3 denote the (history-dependent) remaining market as the state 
has just become q3. In q3 the players follow the μS3 -strategy profile where μS3 denotes the 
women-optimal matching for S3.

Note that σ satisfies the private-dinner condition. μa obtains almost surely conditional on qa

being reached. μb obtains almost surely conditional on qb being reached. qa is reached if the first 
meeting between (m1, w1) takes place before the first meeting between (m′

1, w
′
1); qb is reached 

if the first meeting between (m′
1, w

′
1) takes place before the first meeting between (m1, w1). It is 

easy to verify that μa and μb both obtain with probability 0.5.
To see that σ is indeed a limit equilibrium it suffices to check the absence of profitable 

one-deviations in q0 because μa restricted to Sa , μb restricted to Sb, and μS3 restricted to S3
are stable matchings for the respective submarkets and hence Proposition 4.2 is applicable to 
these cases. Let V (x, δ) denote the expected payoff for player x under σ if the discount factor 
is δ. For any h ∈ Ĥ such that the state of h is q0, player x’s expected payoff in �(h) is also 
V (x, δ). We have V (m) := limδ→1 δV (m, δ) = 1

2u(m, μa(m)) + 1
2u(m, μb(m)) for any m ∈ M

and V (w) := limδ→1 δV (w, δ) = 1
2v(μa(w), w) + 1

2v(μb(w), w) for any w ∈ W . Observe that 
v(m, w) > V (w) if and only if m is w’s first choice. Thus accepting only her first choice is opti-
mal for every woman in state q0 given δ sufficiently close to 1. In particular it is optimal for w2
to reject m1 despite they form a blocking pair against μa and for w′

2 to reject m′
1 despite they 

form a blocking pair against μb. The men’s incentives can be verified by routine inspection. �
Example 2 shows that, despite Proposition 4.4, unstable matchings may obtain in private-

dinner equilibria. Suppose (m1, w2), a pair that blocks one of the probable outcome match-
ings μa , meet when the remaining market is the initial market. At this point (m1, w2) do not both 
profit from circumventing the equilibrium by marrying each other, because the game can still go 
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either way, leading to μa or μb . Indeed, m1 would accept w2 yet w2 would reject m1, because 
w2 still has a chance to marry a more preferred man, m2, with probability 0.5. If (m′

1, w
′
1) is the 

first couple to marry then w2 will marry m2 eventually. However, if instead (m1, w1) is the first 
couple to marry, then for w2, m2 is impossible and m1 is no more, forcing her to marry the last 
choice m3. w2 would regret that she had rejected m1, as an old English saying goes: He that will 
not when he may; when he will, he shall have Nay.

Regret occurs in a nonstationary setting because the search prospect may change as the game 
unfolds. Regret does not occur in a model with a completely stationary search setting, such as the 
one in Adachi (2003). The model in Lauermann and Nöldeke (2014) also assumes a stationary 
search setting but has a trace of nonstationarity: Players may be forced to leave the market as 
singles, at the point of which one’s continuation payoff drops to zero. It is this trace of nonsta-
tionarity that makes possible the emergence of regret and unstable matchings in some equilibria 
in which players are forced to leave as singles after having rejected acceptable options in the 
past.

Example 3 (Coordination failure). The initial market is described by the following lists:

P(m1) = w1,w2, P (w1) = m1,m3,

P (m2) = w2,w3, P (w2) = m2,m1,

P (m3) = w3,w1, P (w3) = m3,m2.

Moreover, for any m ∈ M , if w and w′ are m’s first and second choices respectively then 
u(m, w′) > 2

3u(m, w) + 1
6u(m, w′). Similarly for any w ∈ W , if m and m′ are w’s first and sec-

ond choices respectively then v(m′, w) > 2
3v(m, w) + 1

6v(m′, w). The contact function satisfies 
C(m, w, S) = C(m̂, ŵ, S) for any pairs (m, w) ∈ S and (m̂, ŵ) ∈ S for any S ∈ S . Observe that 
the initial market satisfies the Sequential Preference Condition and so do all of its submarkets.

In the limit equilibrium σ , when the remaining market is the initial market, each man accepts 
every acceptable woman and each woman accepts every acceptable man. After the first marriage 
is realized the players follow the μS-strategy profile where μS is the unique stable matching for 
the remaining market S right after the first marriage. σ satisfies the Markov condition.

The following four matchings obtain with positive probability:

μ0 : m1 �→ w1, μ1 : m1 �→ w2, μ2 : m1 �→ w1, μ3 : m1 �→ s,

m2 �→ w2, m2 �→ s, m2 �→ w3, m2 �→ w2,

m3 �→ w3, m3 �→ w3, m3 �→ s, m3 �→ w1,

w1 �→ s, w2 �→ s, w3 �→ s.

μ0 is the unique stable matching for the initial market. Each of μi, i = 1, 2, 3 is Pareto-dominated 
by μ0. It is easy to verify the following: μ0 obtains almost surely conditional on the event E0 that 
a man meets his first choice on the first day of the game. μi, i = 1, 2, 3, obtains almost surely 
conditional on the event Ei that mi meets his second choice on the first day of the game. Let 
p(μ) denote the unconditional probability that μ obtains under σ . For any i,

p(μi) = Pr(Ei) × 1 +
∑

j �=i
Pr(Ej ) × 0 +

(
1 −

∑3

j=0
Pr(Ej )

)
p(μi).

To see that the equality holds, note that conditional on none of Ei , i = 0, 1, 2, 3, having occurred 
on the first day, the probability that μi obtains remains p(μi) because σ satisfies the Markov 
condition. By the specification of the contact function we have Pr(E0) = 1/3 and Pr(Ei) = 1/9
for i = 1, 2, 3. Thus p(μ0) = 1/2 and p(μi) = 1/6 for i = 1, 2, 3. Observe that under σ each 
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player marries his or her first choice with probability 2/3, second choice with probability 1/3, and 
stays single with probability 1/6.

To verify that σ is indeed a limit equilibrium, it suffices to check the absence of profitable 
one-deviations when the remaining market is the initial market, since Proposition 4.2 covers the 
other cases. Let V (x, δ) denote player x’s expected payoff under σ if the discount factor is δ. 
V (x, δ) is also x’s expected payoff in �(h) for any h ∈ Ĥ such that S(h) is the initial market since 
σ satisfies the Markov condition. It is easy to verify that V (w) := limδ→1 V (w, δ) = 2

3v(m, w) +
1
6v(m′, w) where m and m′ are w’s first and second choices respectively. We have δV (w, δ) <
V (w) < v(m′, w) where the second inequality is by assumption, implying it is optimal for w to 
accept both m and m′. Similarly it is optimal for each man to accept every acceptable woman. �

In Example 3, σ is strictly Pareto-dominated by the μ0-strategy profile, which by Proposi-
tion 4.2 is also a limit equilibrium. Inefficiency arises because of a coordination failure due to 
self-confirmation of mutual doubts. Despite being each other’s first choice, m1 does not commit 
to waiting for w1 because w1 does not commit to waiting for m1 because m1 does not commit 
to waiting for w1 and so on ad infinitum. The example shows that the Markov condition, which 
is stronger than the private-dinner condition, and the Sequential Preference Condition combined 
are not sufficient to rule out limit equilibria in which unstable matchings obtain with positive 
probability.

4.6. Delay

This subsection studies whether equilibrium delay may cause significant efficiency loss even 
if search frictions are small. Two types of delay come to mind. The first type refers to the situation 
that a game never ends. Recall a game ends when the remaining market becomes trivial. A never-
ending game implies at least one mutually beneficial marriage is not realized while the pertained 
players stay unmarried into the infinite future. Such a situation is not unlike a never-ending ne-
gotiation over how to split the money on the table. The upcoming proposition essentially rules 
out this type of delay in equilibrium.

Proposition 4.7. A game ends almost surely in any subgame perfect equilibrium.

The proof, found in Appendix A.1, hinges on the observation that in any subgame perfect 
equilibrium, after any nonterminal history, the probability that no marriage occurs during the next 
T days is less than some constant p < 1 if T is sufficiently large. It follows that the probability 
that no marriage occurs for a duration of kT days is less than pk , thus the probability that a 
marriage will occur during the next kT days becomes arbitrarily close to 1 as k tends to ∞, 
implying the initial market will eventually shrink to a trivial market.

In contrast to a never-ending game, the second type of delay is in its literal sense: Some 
marriages are realized too late. We define what it means to be “too late” as follows: Let M
denote the set of all matchings for the initial market. For any strategy profile σ and man m define 
the efficiency loss due to delay under σ as

Lσ (m, δ) :=
∑

μ∈M
pσ (μ)u(m,μ(m)) − Vσ (m, δ)

where pσ (μ) denotes the probability that μ obtains under σ and Vσ (m, δ) denotes m’s expected 
payoff under σ if the discount factor is δ. Define Lσ (w, δ) for each woman w analogously. Ef-
ficiency loss is thus measured as the difference between a player’s expected payoff from the 
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immediate resolution of the lottery induced by σ and his or her expected payoff under σ . δ < 1
implies Lσ (x, δ) ≥ 0. We ask whether equilibrium efficiency loss due to delay vanishes as search 
frictions vanish, that is, whether the equality limδ→1 supσ∈	(δ) Lσ (x, δ) = 0 holds for any player 
x where 	(δ) denotes the set of all subgame perfect equilibria of the game with discount fac-
tor δ. Examples 4 and 5 show that equilibrium efficiency loss due to delay may remain as search 
frictions vanish.

Example 4 (Wait and see). The initial market is described by the following lists:

P(m1) = w1,w2, P (w1) = m2,m1,

P (m2) = w2,w1, P (w2) = m1,m2.

Each player receives a payoff of 3 from marrying the first choice and 1 from marrying the second 
choice. The contact function satisfies C(m, w, S) = C(m̂, ŵ, S) for any pairs (m, w) ∈ S and 
(m̂, ŵ) ∈ S for any S ∈ S .

Fix η ∈ (0.5, 1). Given δ sufficiently close to 1 there exists τ(δ) ∈ N such that 0.5 < δτ(δ)

and δτ(δ)−1 < η. Consider the strategy profile σ(δ) specified by an automaton with the following 
states:

q0: The initial state. In q0, each man accepts no one; each woman accepts her first choice. The 
transition rules are

q0 −→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qM if (m1,w1) or (m2,w2) meet on the τ(δ)th day,

qW if (m1,w2) or (m2,w1) meet on the τ(δ)th day,

q3 if some pair marry before the τ(δ)th day,

q0 otherwise.

qM : An absorbing state. When the state has just become qM the remaining market is the ini-
tial one. In qM the players follow the μM -strategy profile where μM is the men-optimal 
matching for the initial market.

qW : Symmetric to qM in which the μW -strategy profile is followed where μW is the women-
optimal matching for the initial market.

q3: An absorbing state. The remaining pair (m, w) accept each other.

Note that σ(δ) satisfies the private-dinner condition. Under σ(δ), no player marries during the 
first τ(δ) −1 days. The pair that meet on the τ(δ)th day marry on that day and the other pair marry 
on the next day. It is easily verified that μM and μW both obtain with probability 0.5, and that on 
the τ(δ) −nth day player x’s expected payoff K(x, n, δ) is greater than δn+1(0.5 ×3 +0.5 ×1) =
2δn+1 for any n such that 0 < τ(δ) − n < τ(δ). By the choice of τ(δ), 2δn+1 ≥ 2δτ(δ) > 1. To 
verify that σ(δ) is a subgame perfect equilibrium given δ sufficiently close to 1, it suffices to 
check the absence of profitable one-deviations in q0 because Proposition 4.2 and Lemma 4.1
cover the other states. Suppose (m1, w1) meet in q0 on the τ(δ) − nth day. w1’s expected payoff 
from accepting m1 is 1 whereas that from rejecting him is K(w1, n, δ) > 1, thus rejecting m1
is optimal. m1’s expected payoffs from accepting and rejecting w1 are the same as he will be 
rejected anyway, thus rejecting w1 is optimal. The other cases are similar or can be verified by 
routine inspection.

Note that Vσ(δ)(x, δ) < δτ(δ)−1(0.5 × 3 + 0.5 × 1) = 2δτ(δ)−1 for any player x since x cannot 
marry before the τ(δ)th day. Thus
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Lσ(δ)(x, δ) = 0.5 × 3 + 0.5 × 1 − Vσ(δ)(x, δ) > 2(1 − δτ(δ)−1) > 2(1 − η) > 0.

That σ(δ) is a subgame perfect equilibrium of the game with discount factor δ sufficiently close 
to 1 implies limδ→1 supσ∈	(δ) Lσ (x, δ) ≥ 2(1 − η) for any x. �

In Example 4, each player waits to see if oneself will be lucky to marry his or her first choice, 
the revelation of which is on the τ(δ)th day. As search frictions vanish, players become increas-
ingly willing to wait longer. Efficiency loss lingers as the length of waiting grows in pace with 
the vanishing search frictions.

Example 5 (War of attrition). Take the game in Example 4. Consider strategy profile σ(δ) un-
der which each player accepts his or her first choice in the remaining market with certainty and 
second choice (if there is one) with probability q(δ) ∈ (0, 1). Note that σ(δ) satisfies the Markov 
condition. We want to choose q(δ) so that σ(δ) is a subgame perfect equilibrium. Note that when 
the remaining market is the initial one, w1 randomizes between accepting and rejecting m1. Con-
ditional on w1 having rejected m1 on a given day, all of the following four events occur with 
probability q(δ)/4: (1) (m1, w1) marry tomorrow, (2) (m2, w1) marry tomorrow, (3) (m2, w2)

marry tomorrow, and then (m1, w1) marry on the day after tomorrow, (4) (m1, w2) marry tomor-
row, and then (m2, w1) marry on the day after tomorrow. With the remaining probability 1 −q(δ)

no one marries tomorrow. To make w1 indifferent between accepting and rejecting m1, we must 
have

v(m1,w1) = δ

[
q(δ)

4

(
v(m1,w1) + v(m2,w1) + δv(m1,w1) + δv(m2,w1)

)

+ (1 − q(δ))v(m1,w1)

]
.

Substituting in v(m1, w1) = 1 and v(m2, w1) = 3 we conclude that q(δ) = (1 − δ)/δ2. The same 
indifference argument applies to each of the other players. (1 − δ)/δ2 ∈ (0, 1) for any δ > (

√
5 −

1)/2 ≈ 0.618. It is easily verified that for δ sufficiently close to 1, σ(δ) is a subgame perfect 
equilibrium if and only if q(δ) = (1 − δ)/δ2.

Now evaluate the efficiency loss due to delay. σ(δ) induces a lottery in which each player 
marries either player on the other side with probability 0.5. For any player x and δ > (

√
5 − 1)/2

obviously Vσ(δ)(x, δ) = 1/δ. Thus

Lσ(δ)(x, δ) = 0.5 × 3 + 0.5 × 1 − 1/δ.

Note that Lσ(δ)(x, δ) is positive for any δ > (
√

5 − 1)/2 and limδ→1 Lσ(δ)(x, δ) = 1. Thus 
limδ→1 supσ∈	(δ) Lσ (x, δ) ≥ 1. �

Example 5 resembles a war of attrition. A player “chickens out” to accept his or her second 
choice with probability (1 − δ)/δ2, which tends to 0 as δ tends to 1. It is notable that Lσ(δ)(x, δ)
increases with δ: Ironically, the expected total cost of search goes up as the average cost goes 
down. In both Examples 4 and 5, the efficiency gain from vanishing search frictions is undone 
in equilibrium by increasing delay in such a way that the incentives of the players are preserved, 
leaving the net efficiency loss significant.
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4.7. A sufficient condition for equilibrium uniqueness

In this subsection a condition on the preference structure is identified under which the game 
has an essentially unique subgame perfect equilibrium if search frictions are small.

For h ∈ Z define o(h) := (
μh(m), th(m)

)
m∈M

where μh is the outcome matching of h and 
th(m) ∈ {1, 2, . . .} is the date of (m, μh(m))’s marriage under h if μh(m) ∈ W or the date of the 
last day of h if μh(m) = s. th(m) = ∞ if μh(m) = s and h is infinite. o(h) records each realized 
marriage and its date under h. If o(h) = o(h′) then under h and h′ every player is married to the 
same person on the same day or else stays single. Two strategy profiles are outcome equivalent
if they induce the same probability measure on {o(h) : h ∈ Z}. A game has an essentially unique 
subgame perfect equilibrium if all of its subgame perfect equilibria are outcome equivalent.

A pair (m, w) is woman-acceptable if m is acceptable to w. Lemma 4.1(b) implies equi-
librium marriages may occur only between woman-acceptable pairs. For a submarket S, player 
x ∈ S is a top player for S if x and some y ∈ S form a top pair for S and moreover one of the 
following is true: (1) |AS(x)| = 1 or (2) |AS(x)| > 1 and x is a top player for S\(m, w) for any 
woman-acceptable pair (m, w) ∈ S such that x /∈ {m, w}.

An immediate observation is that if x is a top player for S, and S′ is derived from S as a result 
of a sequence of other woman-acceptable pairs having left, then either |AS(x)| = 0 or x is still a 
top player for S′. The observation also implies that, despite the recursive definition, whether x is 
a top player for S can be verified mechanically in a finite number of steps. Since x (assumedly 
male) being a top player for S implies he is part of a top pair for S, it follows that he continues to 
be part of a top pair for the remaining market as other woman-acceptable pairs leave S (although 
his partner in the current top pair might change), until x can no longer find an acceptable woman 
who also finds him acceptable. In the case that every man is acceptable to every woman and vice 
versa, x being a top player for the initial market implies he is the favorite man of his favorite 
woman in the remaining market at any moment when he is still unmarried.

Proposition 4.8. Suppose there is an ordering of the men m1, . . . , m|M|, an ordering of the women 
w1, . . . , w|W | and a positive integer k such that:

1. For any i ≤ k, (mi, wi) is a top pair for Si := ({mj : j ≥ i}, {wj : j ≥ i}, u, v), and moreover 
mi or wi is a top player for Si .

2. Sk+1 := ({mj : j ≥ k + 1}, {wj : j ≥ k + 1}, u, v) is trivial.

There exists d < 1 such that for any δ > d , (M, W, u, v, C, δ) has an essentially unique subgame 
perfect equilibrium.

The proof is provided in Appendix A.2. Given the premise of Proposition 4.8, the initial mar-
ket has a unique stable matching μ such that μ(mi) = wi for i ≤ k, and μ(mi) = μ(wi) = s for 
i > k. To sketch out the proof, for simplicity suppose every man is acceptable to every woman 
and vice versa. The first step is proving by induction on the market size that a top player w1

(assumedly female) for the initial market marries her favorite man almost surely and upon first 
meeting in any subgame perfect equilibrium for δ sufficiently close to 1. The inductive step goes 
as follows. Suppose m1 is w1’s favorite man in the initial market. By Lemma 4.5, (m1, w1)

accept each other when they meet. Fix an equilibrium. Suppose w1 deviates to an alternative 
strategy under which she accepts only m1 when the remaining market is the initial market, and 
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switches back to following the equilibrium strategy after someone has married. For δ close to 1, 
w1’s expected payoff from the deviation is strictly larger than v(m′, w1) where m′ is w1’s second 
favorite man, because if someone has married before (m1, w1)’s first meeting then in the continu-
ation subgame, as the market has become smaller to which the inductive hypothesis is applicable, 
w1 marries her favorite man in the remaining market, which can be m1 or m′, almost surely and 
upon first meeting, whereas if (m1, w1) meet before anyone has married then they marry each 
other. Thus w1’s equilibrium payoff must as well be strictly larger than v(m′, w1), implying if 
no one has married, w1 rejects any man worse than m1. Given w1’s behavior pinned down, it is 
shown that m1’s best response is accepting only w1 when no one has married. Combined with 
the inductive hypothesis, it follows that (m1, w1) marry almost surely and upon first meeting. 
With (m1, w1)’s equilibrium behavior determined this way, we may treat them as nonstrategic 
“dummy players” who only accept each other. Then since one of m2 or w2 is a top player for the 
submarket without (m1, w1), applying the analogous logic it is shown that (m2, w2) also marry 
almost surely and upon first meeting, and so on and so forth until the market unravels to the 
trivial Sk+1. From Lemma 4.1 it follows that every player in Sk+1 must stay single.

The condition proposed in Proposition 4.8, for convenience referred to as Condition 4.8, 
is stronger than the Sequential Preference Condition. The initial market from Example 3, for 
instance, satisfies the Sequential Preference Condition but fails Condition 4.8. Indeed, in Exam-
ple 3, although (m1, w1) is a top pair for the initial market, if w1 goes “astray” and marries m3

then in the remaining market m1 is no longer part of a top pair, and consequently his search 
prospect drops drastically because he has no chance of marrying his second choice w2. It is this 
possibility of a large drop in the search prospect that makes m1 willing to accept his second 
choice, w2, even when w1 is still in the market. For a market that satisfies Condition 4.8, in con-
trast, if m (assumedly male) is a top player for the initial market and forms a top pair with w, 
then even if w marries someone else, in the remaining market m still forms a top pair with w′
whom he likes just next to w. Loosely speaking, the search prospect of m would only experience 
a gradual drop if w marries someone else. This ensures that m will wait for w if she is still in the 
market, preventing self-confirmation of mutual doubt present in Example 3 from arising.

An acyclicity condition under which a marriage market has a unique stable matching is pro-
posed in Romero-Medina and Triossi (2013),11 which requires that the preferences of the players 
on one side over acceptable players on the other side do not display cycles. It can be shown that 
the acyclicity condition implies Condition 4.8. Condition 4.8 is weaker, most importantly be-
cause it allows preference cycles. For instance, the market with preference lists

P(m1) = w1,w2, P (w1) = m1,m2,

P (m2) = w2,w1, P (w2) = m2,m1

displays preference cycles on both sides but satisfies Condition 4.8.12 It is worthwhile noting that 
Condition 4.8 is an implication of the commonly seen preference structure such that players on 
at least one side of the market share the same preference ordering over those on the other side.

11 I am indebted to a referee for referring me to this paper.
12 A weaker condition, the absence of simultaneous cycles, is proposed in Romero-Medina and Triossi (2013) that also 
guarantees the stable matching is unique. Condition 4.8 is neither necessary nor sufficient for that weaker condition. The 
initial market from Example 3 satisfies the absence of simultaneous cycles but violates Condition 4.8. An example that 
violates the absence of simultaneous cycles but satisfies Condition 4.8 is given in Appendix A.4.
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5. Conclusion

This paper studies a search and matching game with a marriage market embedded, and ana-
lyzes whether matchings that arise in equilibria are stable when search frictions are small. It is 
found that this is not the case in general. Unstable matchings may arise for many reasons and 
under restrictive conditions. Moreover, significant loss of efficiency due to delay may be incurred 
in equilibria even if search frictions are small. A condition that implies preference alignment in 
a strong sense ensures equilibrium uniqueness, restoring stability and efficiency.
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Appendix A

A.1. Proof of Proposition 4.7

Proposition 4.7 is proved with the assistance of Lemma A.1.

Lemma A.1. For any game (M, W, u, v, C, δ) there exist τ ∈ N
+, q ∈ (0, 1) and (m, w) ∈ M ×

W such that for any subgame perfect equilibrium the following is true: If a meeting between 
(m, w) ends in separation with positive probability, then the probability that no player marries 
during the first τ days of the subgame resulting from that meeting having ended in separation is 
less than q .

Proof. Let SI denote the initial market. There exists a pair (m, w) such that m = αSI (w) because 
SI is nontrivial. Let w and w respectively denote m’s first and last choices in ASI (m) and define 
π := u(m, w) and π := u(m, w). Thus π ≥ u(m, w) ≥ π > 0 and therefore we can pick τ ∈ N

+
and q ∈ (0, 1) such that δ[(1 − q)π + qδτπ] < π .

Fix a subgame perfect equilibrium σ . Suppose (m, w) meet on a day. Lemma 4.1(d) implies 
w accepts m if she has been accepted since m = αSI (w). Thus if the meeting ends in separation 
with positive probability then it must be that m rejects w with positive probability. Let q denote 
the equilibrium probability that no player marries during the first τ days in the subgame resulting 
from m having rejected w. By Lemma 4.1(d), m’s expected payoff from rejecting w is no more 
than δ[(1 − q)π + qδτπ]. If m rejects w with positive probability in equilibrium then δ[(1 −
q)π + qδτπ] ≥ u(m, w) ≥ π because m’s expected payoff from accepting w is u(m, w) as he 
will be accepted. Thus q < q by the choice of q. �
Proof of Proposition 4.7. Fix a game (M, W, u, v, C, δ) and denote the initial market as SI . 
Prove by induction. Suppose |M| = 1. Let m be the only man and w := αSI (m). Thus (m, w) is 
a top pair for SI . In any subgame perfect equilibrium the game ends with certainty after (m, w)

meet because they marry each other upon first meeting by Lemma 4.5. The proposition then 
follows.
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Suppose the proposition is true if |M| < n for some n. Consider |M| = n. Fix a subgame 
perfect equilibrium σ . By Lemma A.1 there exist τ ∈N

+, q ∈ (0, 1) and (m, w) ∈ SI such that if 
(m, w) meet and in equilibrium the meeting ends in separation with positive probability, then the 
probability that no one marries during the first τ days of the subgame resulting from that meeting 
having ended in separation is less than q. For any h ∈ Ĥ such that S(h) = SI let β(h) denote the 
equilibrium probability that no one marries in the first τ + 1 days of �(h); let φ(h) denote the 
equilibrium probability that (m, w) marry on the first day of �(h) conditional on them meeting 
on that day. Then by Lemma A.1, for any h ∈ Ĥ

β(h) ≤ ε
(
φ(h) × 0 + (1 − φ(h)) × q

)
+ (1 − ε) ≤ εq + (1 − ε). (I1)

Let h0 denote the initial (empty) history. For any k ∈N
+ let Ĥk denote the set of all histories h in 

Ĥ such that the first day of �(h) is the k(τ +1) +1st day of the initial game and S(h) = SI . Thus 
h ∈ Ĥk being reached implies no player has married during the first k(τ + 1) days of the initial 
game. Let Ek denote the event that any h ∈ Ĥk is reached. Inequality I1 implies Prσ (E1) ≤
εq̄ + (1 − ε) because h0 ∈ Ĥ . I1 also implies Prσ (Ek|Ek−1) ≤ εq̄ + (1 − ε) for any k > 1. 
By the inductive hypothesis the probability Q that the game does not end at all is equal to 
the probability that every player remains in the market into the infinite future. Hence for any 
k > 1 we have Q ≤ Prσ (Ek) = Prσ (E1) 

∏k
j=2 Prσ (Ej |Ej−1). The present proposition follows 

as Q ≤ limk→∞[εq + (1 − ε)]k = 0. �
A.2. Proof of Proposition 4.8

Introduce additional terminology for the proof. Let 	(δ) denote the set of all subgame per-
fect equilibria of the game with discount factor δ in the environment E := (M, W, u, v, C). 
A (possibly empty) set P of disjoint pairs of a man and a woman from the initial market 
SI := (M, W, u, v) is a settled set for E if there exists some d < 1 such for any σ ∈ 	(δ)

where δ > d , σ implies any (m, w) ∈ P marry almost surely and upon first meeting in �(h)

if h ∈ Ĥ , (m, w) ∈ S(h), and moreover S(h) can be derived from SI as a result of a (possi-
bly empty) sequence of pairs having left, among which each pair (m′, w′) is either in P or is 
a woman-acceptable pair from SI\P , where SI\P denotes the submarket that complements P
in SI . d is called a settling discount factor for P . Note that any d ′ > d is also a settling discount 
factor for P .

Proposition 4.8 is proved with the assistance of Lemma A.2.

Lemma A.2. For any settled set P for the environment E, if m is a top player for SI\P and 
w := αSI \P (m), or w is a top player for SI\P and m := αSI \P (w), then P ∪ {(m, w)} is also a 
settled set for E.

Proof. Prove by induction on |M|. Suppose |M| = 1. Let m be the only man and w := αSI (m). 
For δ sufficiently close to 1, it is easy to see that in any subgame perfect equilibrium, (m, w)

marry almost surely and upon first meeting. Thus there are two settled sets, the empty set P1
and P2 := {(m, w)}. The lemma is true for P1 because m is a top player in SI = SI\P1 and as is 
concluded {(m, w)} is a settled set. The lemma is true for P2 vacuously.

Suppose the lemma is true if |M| < n for some n. Consider |M| = n. Pick a settled set P for 
E and let d < 1 be a settling discount factor for P . Suppose w is a top player for S := SI\P . Let 
m := αS(w) and denote m as w’s second choice in AS(w) ∪ {s}. By definition of the top player 
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we have w = αS(m). Notice that m may be s. Define ĤI := {h ∈ Ĥ : S(h) = SI }. Thus �(h) is 
isomorphic to the initial game for h ∈ ĤI . Consider σ ∈ 	(δ) for δ > d . It is helpful to bear in 
mind that the choice of σ depends on δ. In σ , by assumption w may only marry a man from S in 
the subgame �(h) where h ∈ ĤI , thus her expected payoff in �(h) is no higher than v(m, w) by 
an argument similar to the proof for Lemma 4.1(d). It follows that w always accepts m when the 
remaining market is SI . Given that, m always accepts w when the remaining market is SI by a 
similar argument. Thus in σ , (m, w) marry upon first meeting in �(h) for any h ∈ ĤI .

Suppose w deviates to the strategy under which she only accepts m when the remaining mar-
ket is SI , and switches back to following σ if the remaining market is no longer SI . Let σ ′
denote the strategy profile due to w’s unilateral deviation. For each h ∈ ĤI let K(h, δ, σ) denote 
w’s expected payoff in �(h) under σ ′. Define K(δ, σ) := inf

h∈ĤI
K(h, δ, σ). Let p(h, σ, m, w)

denote the probability that (m, w) ∈ SI meet and marry on the first day of �(h) under σ ′. Let 
h′(h, m, w) ∈ Ĥ denote the immediate history resulting from (m, w) having married on the first 
day of �(h). For w �= w let U(h, δ, σ, m, w) denote w’s expected payoff in �(h′(h, m, w)) un-
der σ ′. σ instead of σ ′ appears as an argument for K , p and U because σ ′ is determined by σ . 
By the definition of K , for any η1 > 0 there exists hη1 ∈ ĤI such that

K(δ,σ ) + η1 > K(hη1 , δ, σ )

≥ p(hη1 , σ,m,w)v(m,w)

+
∑
m∈M

∑
w �=w

p(hη1, σ,m,w)δU(hη1 , δ, σ,m,w)

+
(

1 − p(hη1 , σ,m,w) −
∑
m∈M

∑
w �=w

p(hη1, σ,m,w)
)
δK(δ,σ ). (I2)

p(hη1, σ, m, w) > ε because (m, w) accept each other in �(hη1). Fix (m, w) such that w �= w

and p(hη1, σ, m, w) > 0. Because players other than w follow σ , (m, w) ∈ P or (m, w) is a 
woman-acceptable pair from S. Let P ′ := P \{(m, w)} if (m, w) ∈ P or P ′ := P otherwise. 
Let S

′
denote the submarket complementing P ′ in S(h′(h, m, w)) = (M\{m}, W\{w}, u, v). If 

(m, w) ∈ P then S
′ = S and thus w is a top player for S

′
and αS

′
(w) = m. If instead (m, w) is a 

woman-acceptable pair from S then S
′ = S\(m, w) and one of the following is true:

1. m �= m: w is a top player for S
′

and αS
′
(w) = m.

2. m = m, m �= s: w is a top player for S
′

and αS
′
(w) = m.

3. m = m, m = s: αS
′
(w) = s.

It is easy to verify from definition that P being a settled set for E implies P ′ is a settled set for the 
sub-environment E′ := (M\{m}, W\{w}, u, v, C). Note that σ ′ restricted to �(h′(hη1 , m, w)) is 
a subgame perfect equilibrium of it because w has switched back to following σ . If (m, w) ∈ P , 
or if case 1 above is true, then since the number of men in S(h′(h, m, w)) is less than n, the 
inductive hypothesis applies, implying P ′ ∪ {(m, w)} is a settled set for E′, thus for δ suf-
ficiently close to 1, σ ∈ 	(δ) implies (m, w) marry almost surely and upon first meeting in 
�(h′(hη1 , m, w)), and thus δU(hη1, δ, σ, m, w) → v(m, w) as δ → 1. Likewise if case 2 is true 
then δU(hη1 , δ, σ, m, w) → v(m, w) as δ → 1. If case 3 is true then by the assumption that P ′
is a settled set for E′ and Lemma 4.1(a), δU(hη1 , δ, σ, m, w) = 0 = v(m, w). In general, for any 
η2 > 0 there exists dη < 1 such that if δ > dη then for w �= w, p(hη , σ, m, w) > 0 implies
2 2 1
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v(m,w) > δU(hη1 , δ, σ,m,w) > v(m,w) − η2. (I3)

Substituting I3 along with p(hη1, σ, m, w) > ε, K(δ, σ) ≤ v(m, w) and R(hη1 , σ) :=∑
m∈M

∑
w �=w p(hη1 , σ, m, w) back to I2, we have

K(δ,σ ) >
εv(m,w) + R(hη1 , σ )(v(m,w) − η2) − η1

1 − δ(1 − ε − R(hη1 , σ ))
(I4)

for η2 sufficiently small and δ > dη2 . The right hand side of I4 is decreasing in R(hη1, σ) for δ
close 1 and η1, η2 close to 0. For such extreme values, R(hη1, σ) < 1 − ε implies for δ > dη2 ,

K(δ,σ ) > εv(m,w) + (1 − ε)v(m,w) − (1 − ε)η2 − η1.

Taking limits η1 → 0, η2 → 0 and correspondingly δ → 1 we have

lim
δ→1

inf
σ∈	(δ)

K(δ, σ ) ≥ εv(m,w) + (1 − ε)v(m,w) > v(m,w). (I5)

Inequality I5 implies w’s expected payoff under σ in �(h) where h ∈ ĤI is strictly greater than 
v(m, w) for δ sufficiently close to 1. For such δ, σ ∈ 	(δ) implies w rejects any m such that 
m 	w m when the remaining market is SI .

Now consider m. Suppose other players (including w) follow σ and m deviates to the strategy 
under which he only accepts w when the remaining market is SI , and switches back to following 
σ if the remaining market is no longer SI . Let σ ′′ denote the strategy profile due to m’s unilateral 
deviation.

Claim A.3. For δ sufficiently close to 1, σ ∈ 	(δ) implies under σ ′′, (m, w) marry almost surely 
and upon first meeting in �(h) for any h ∈ ĤI .

Proof. Observe that for δ sufficiently close to 1, almost surely one of the following scenarios 
occur under σ ′′:

1. (m, w) meet when the remaining market is SI .
2. The first marriage is between (m, w) where m �= m, w �= w, (m, w) ∈ P or (m, w) is a 

woman-acceptable pair from S.

That w will not marry with m �= m as the first married couple is due to the assumption that she 
may not marry a man from a pair in P , plus the conclusion from the above that she rejects every 
man worse than m when the remaining market is SI . If scenario 1 occurs then (m, w) marry 
immediately. If scenario 2 occurs, then the inductive hypothesis13 implies (m, w) marry almost 
surely and upon first meeting in the subsequent subgame. �

By Claim A.3, m’s expected payoff under σ ′′ in �(h) where h ∈ ĤI tends to u(m, w) as 
δ → 1, implying m’s expected payoff under σ in �(h) also tends to u(m, w). Thus for δ suffi-
ciently close to 1, σ ∈ 	(δ) implies when the remaining market is SI , m rejects any w such that 
w 	m w if w would accept m with positive probability. Then an analogous claim to Claim A.3
is true for σ with an analogous proof.

13 The argument for the applicability of the inductive hypothesis, and its actual application, are the same as those used 
above for w’s case.
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Now consider any h ∈ Ĥ such that S(h) �= SI , (m, w) ∈ S(h), and moreover S(h) can be 
derived from SI as a result of a sequence of pairs having left, among which each pair (m, w)

is either in P or is a woman-acceptable pair from S. Let P(h) denote the set of pairs in P
which are present in S(h), and let E(h) denote the sub-environment with initial market S(h). 
It is easy to verify from definition that P(h) is a settled set for E(h), w is a top player for 
S(h) := S(h)\P(h), and m = αS(h)(w). Thus the inductive hypothesis implies P(h) ∪ {(m, w)}
is a settled set for E(h). Therefore for δ sufficiently close to 1, σ ∈ 	(δ) implies (m, w) marry 
almost surely and upon first meeting in �(h). It follows that P ∪ {(m, w)} is a settled set for E.

The proof for the case that a male player is a top player for S is similar. �
Proof of Proposition 4.8. Denote E := (M, W, u, v, C). To prove the present proposition it 
suffices to show there exists some d < 1 such that for any σ ∈ 	(δ) where δ > d , (mi, wi) marry 
almost surely and upon first meeting if i ≤ k, and mi or wi stays single if i > k.

Since the empty set is a settled set for E and m1 or w1 is a top player for the initial market S1, 
Lemma A.2 implies P1 := ({m1, w1}) is a settled set for E. Let Pi := {(mj , wj) : j ≤ i}. Suppose 
Pi is a settled set for E if i < n for some n ≤ k. Since mn or wn is a top player for Sn = S1\Pn−1, 
Lemma A.2 implies that Pn is a settled set for E. Thus Pk is a settled set for E. Let d be a settling 
discount factor for Pk . Pick σ ∈ 	(δ) where δ > d . Pk being a settled set for E implies (mi, wi)

marry almost surely and upon first meeting under σ if i ≤ k. Pick a man m ∈ Sk+1. (m, w) marry 
with positive probability in σ only if w ∈ Sk+1 and m is acceptable to w. Since Sk+1 is trivial, if 
m is acceptable to w ∈ Sk+1 then w is unacceptable to m. Thus if m marries at all with positive 
probability, his expected payoff would be negative. Lemma 4.1(a) then implies m stays single 
in σ . It follows that a woman in Sk+1 stays single in σ as well. �
A.3. Example: a man might marry an unacceptable woman

The following example demonstrates that a man may marry an unacceptable woman with 
positive probability in equilibrium.

The initial market is described by the following lists:

P(m1) = w1,w2, P (w1) = m2,m1,

P (m2) = w2,w1, P (w2) = m1,m2,

P (m3) = w3, P (w3) = m3,m1.

Each of the players m1, m2, w1, w2 receives a payoff of 16 from marrying the first choice, 
1 the second choice, and −1 the unacceptable choice; m3 receives a payoff of 16 from marry-
ing w3; w3 receives a payoff of 16 from marrying m3 and 4 from marrying m1. Set δ = 0.5. The 
contact function satisfies C(m, w, S) = C(m̂, ŵ, S) for any pairs (m, w) ∈ S and (m̂, ŵ) ∈ S for 
any S ∈ S .

Consider strategy profile σ given as follows:

• If (m1, w3) do not meet on the first day, the players follow the μm strategy profile where μm

is the men-optimal matching for the initial market.
• If (m1, w3) meet on the first day, m1 accepts w3 with certainty and w3 accepts m1 with 

probability 0.5.
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– If m1 accepts w3 on the first day, then regardless of whether m1 is accepted, after the first 
day the players follow the μ̂m-strategy profile where μ̂m is the men-optimal matching for 
the remaining market.

– If m1 rejects w3 on the first day, then after the first day the players follow the μw strategy 
profile where μw is the women-optimal matching for the initial market.

It is straightforward to verify that σ is a subgame perfect equilibrium of the game. Notably, if 
(m1, w3) meet on the first day, m1 accepts w3 with positive probability despite the latter being 
unacceptable, because by doing so there is a probability of 0.5 that w3 will reject m1 and in the 
subsequent subgame m1 will marry his first choice w1 eventually, whereas if he rejects w3 he 
will have to marry his second choice w2 eventually. Meanwhile, because of discounting, w3 is 
indifferent between marrying m1 today and marrying her first choice m3 in the future, justifying 
her randomizing between accepting and rejecting m1. Under σ there is a positive probability of 
1/9 × 0.5 = 1/18 that m1 marries the unacceptable w3.

A.4. Example: a market that satisfies Condition 4.8 but violates the absence of simultaneous 
cycles

It is easy to verify that the marriage market described by the following lists of preferences 
satisfies Condition 4.8 but violates the absence of simultaneous cycles given in Romero-Medina 
and Triossi (2013).

P(m1) = w1,w3,w4, P (w1) = m1,

P (m2) = w2,w4,w3, P (w2) = m2,

P (m3) = w3, P (w3) = m3,m2,m1,

P (m4) = w4, P (w4) = m4,m1,m2.

Observe that there are two preference cycles: w3 	m1 w4 	m2 w3 and m2 	w3 m1 	w4 m2, 
implying the simultaneous cycle (w4, m1, w3, m2, w4) in the notation of Romero-Medina and 
Triossi (2013).
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